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ABSTRACT
Data sparsity is a challenge problem that most modern recom-
mender systems are confronted with. By leveraging the knowl-
edge from relevant domains, the cross-domain recommendation
technique can be an effective way of alleviating the data sparsity
problem. In this paper, we propose a novel Bi-directional Transfer
learning method for cross-domain recommendation by usingGraph
Collaborative Filtering network as the base model (BiTGCF). BiT-
GCF not only exploits the high-order connectivity in user-item
graph of single domain through a novel feature propagation layer,
but also realizes the two-way transfer of knowledge across two
domains by using the common user as the bridge. Moreover, dis-
tinct from previous cross-domain collaborative filtering methods,
BiTGCF fuses users’ common features and domain-specific features
during transfer. Experimental results on four couple benchmark
datasets verify the effectiveness of BiTGCF over state-of-the-art
models in terms of bi-directional cross domain recommendation.

CCS CONCEPTS
• Information systems → Recommender systems; • Comput-
ing methodologies → Transfer learning.
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1 INTRODUCTION
With the rapid increase of commodity types and quantities, person-
alized recommendation, which can predict the purchase intention
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of users, has become one of the most important services on the
Internet. The personalized recommendation aims to predict a group
of items that users are more likely to purchase in the future by fully
employing uses’ historical interactions.

Collaborative filtering (CF) is a widely used method [18, 27]
for personalized recommendation, which learns the recommender
model based on interaction history of similar users or items. Gen-
erally speaking, the key component in CF models is to learn the
latent features (embeddings) of users and items effectively and
then perform the prediction based on these embeddings. The tradi-
tional CF methods, represented by matrix factorization (MF), obtain
the latent factors of users and items by factorizing the user-item
interactive matrix [26]. Neural CF models, such as NeuMF [10],
replace inner product by multiple neural network layers to obtain
effectively matching function [5, 6, 23, 25]. Due to the powerful
nonlinearity fitting ability of neural network, neural CF models in
general can get better fitting results and have gradually become
the mainstream.

In recent years, inspired by the success of graph convolutional
networks (GCN) in effectively extracting features in non-Euclidean
spaces, some researchers try to exploit the user-item bipartite graph
structure by propagating embeddings on it, aiming at achieving
more effective embeddings [1, 4, 14, 31]. For example, Wang et
al. [29] proposed NGCF, which follows the same propagation rules
as in GCN (including feature transformation, neighborhood ag-
gregation and nonlinear activation) to capture the high-order con-
nectivity between users and items by stacking multiple feature
propagation layers, and achieves promising results. Recently, He et
al. [9] found two common designs in GCNs, transformation function
and nonlinear activation, have no positive effect on collaborative fil-
tering or even degrade the performance. They proposed LightGCN,
which greatly simplifies the design of NGCF but can yield better
performance. In general, the integration of higher-order neighbor
information makes GCN-based methods a great success. However,
due to the large number of items in real life, recommender systems
inevitably face the problem of data sparsity, which has become the
main factor limiting the effectiveness of existing models.

An effective solution to the data sparsity problem is transferring
knowledge [13] from other related domains by transfer learning. In
real life, a user inevitably interacts with multiple domains to meet
the demand of her life. When the interaction history is less in do-
main A, it is natural to consider getting some common knowledge
from correlated domain B that includes more data. In recent years,
cross-domain collaborative filtering (CDCF) [2, 11, 12, 15, 22, 28]
has attracted increasing research attention. But like every coin
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has two sides, the correlations between domains make CDCF pos-
sible, the differences between domains also render it difficult to
transfer knowledge. Early on, CodeBook Transfer (CBT) [15] was
proposed to first compress the dense rating matrix of auxiliary
domain into cluster-level rating pattern, called codebook, by or-
thogonal nonnegative matrix tri-factorization (ONMTF), and then
realize knowledge transfer by sharing the codebook. Later, some
variants of CBT that follow the similar transfer mechanism have
been proposed [7, 21, 24]. This kind of method does not require the
users of two domains to overlap. Unlike CBT’s two-stage migration,
Collective matrix factorization (CMF) [28] collectively factorizes
the rating matrix of two domains with the same users (or items),
and transfers knowledge by sharing the users’ (or items’) latent fea-
tures [28]. This is an effective way to refine users’ features in single
domain with users’ features learned from two domains. On this ba-
sis, some improvements have been proposed [17, 19]. For example,
CoNet [11] takes neural network as the basic model and uses cross
connections unit to improve the learning of matching functions in
the current domain, while PPGN [35] extracts more effective com-
mon users’ features by using GCN on the joint interaction graph of
two domains.

Despite their effectiveness, most current CDCF methods only
focus on refining user representations by sharing better common
features, but without considering users’ domain-specific features,
which may limit the effect of transfer when the domain-specific
features take a major proportion. Take Figure 1 for an example,
there are two domains: Film and Book. Some of the user features
in these two domains should be domain-specific, for instance, in
the film domain, a user shows her preference for music, frame, etc.,
which is not available in the user’s features in the book domain.
But in existing CDCF methods, after transferring (sharing) user’s
features, the user’s preferences in the two domains are exactly
the same. Consequently, the matched movies based on the shared
features may not be satisfactory.

In view of the limitation of existing CDCF methods and the pow-
erful feature extracting ability of GCN, in this work, we propose
a novel Bi-direction Transfer learning method for cross-domain
recommendation by using Graph Collaborative Filtering network
as the base model (BiTGCF). The major difference between BiTGCF
with previous work lies in: (1) A new feature propagation mod-
ule. Inspired by LightGCN, we remove the non-linear activation
function and the transformation matrices in our GCN model for
collaborative filtering, which greatly reduces the number of model
parameters, as well as the risk of model overfitting. But different
from LightGCN, we retain the inner product operation, the self-
connection operation and the layer combination manner. We argue
that these operations are beneficial for increasing the feature flow
among nodes, which in turn can boost the recommendation per-
formance. The experimental study validates our conjecture. (2) A
bi-directional feature transfer module. Compared with previous
CDCF methods, our model takes into account domain-specific fea-
tures in different domains when refining user features. A simple
yet effective balancing mechanism is designed to balance user’s
common features and domain-specific features. Through the bidi-
rectional knowledge transfer between the two domains, our model
can improve the recommendation performance of both domains
simultaneously. The main contributions of this paper are as follows,

Pre-CDCF Bi-TGCN

Extract
and Share
Common
Features

Type

Writing
Style,

Author

Extract
Common
Features Fuse with

Domain-
Specific
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Music
Frames
Actors
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Figure 1: (a) Different preference of user in book and movie
domain; (b) Different ways to extract user’s feature in dif-
ferent domains: Previous CDCFs vs BiTGCF. The circle with
the same color in (b) represents common feature.

• By using graph collaborative filtering network as the base
model, we propose BiTGCF, a novel bi-directional transfer
learning model for cross-domain recommendation. In BiT-
GCF, we design a new feature propagation module, which
borrows the idea from LightGCN to simplify the feature prop-
agation model in a more reasonable manner. Moreover, we
propose a novel knowledge transfer module, which extends
the flow of features from in-domain to inter-domain, and
more importantly, considers the integration of uses’ common
features and domain-specific features.
• We empirically demonstrate that the proposed model BiT-
GCF outperforms the state-of-the-art approaches (for both
single and cross-domain) on four couple cross-domain datasets.
In addition, extensive experiments are conducted to verify
the effectiveness and applicability of our feature transfer
module.

The rest of this paper is organized as follows: Section 2 discusses
related work; Section 3 formally defines the research problem and
briefly reviews two representative recommendation models based
on GCN; Section 4 details our proposed model; Section 5 presents
the experimental study; Finally, Section 6 draws a conclusion.

2 RELATEDWORK
2.1 Model-based CF Methods
Collaborative filtering (CF) is a commonly used technology in mod-
ern recommender systems that parameterizes users and items as
embeddings and reconstructs the interactive history to learn the
embedding parameters. The core of CF lies in how to design the
model so that it can learn more effective embeddings. Earlier CF
models, such as matrix factorization (MF), projects the user (or
item) ID into embedding space, and models the matching relation-
ship between user and item via inner product. The development
of neural network provides a new idea for learning projection and
matching function in CF models. For example, NeuMF [10] uses
the stacked fully connection layer to replace the inner product in
MF, and DMF [33] replaces the linear projection method in MF
with the stacked full connection layer. Recently, researchers have
found that different historical interactions contribute differently
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to the prediction of current interactions. To this end, attention
mechanisms, such as ACF [3] and DeepICF [32], were introduced to
automatically learn the importance of each historical interaction.

2.2 Graph Convolutional Networks based
Recommendation

Inspired by the development of graph neural networks [14, 16, 30],
there are some efforts on exploiting user-item interaction graph
to infer user’s preference. GC-MC [31] applies the graph convo-
lutional network to exploit the connections between users and
items when encoding interactive features. SpectralCF [36] utilizes
a spectral convolution operation to explore all possible connectiv-
ity between users and items in the spectral domain. However, the
eigen-decomposition in SpectralCF, which is a necessary step, is
very time-consuming. Recently, Wang et al. [29] proposed the Neu-
ral Graph Collaborative Filtering (NGCF) framework to integrate
GCN into the embedding process. By stacking multiple embedding
propagation layers, NGCF can capture the collaborative signal in
high-order connectivities between users and items. However, its
designs are rather burdensome. LR-GCCF [4] removes the non-
linear activation function to facilitate turning for large dataset.
More importantly, it takes residual learning approach to explain the
reason of concatenating all the layer’s output. Later, LightGCN [9]
simplifies NGCF by removing the operations such as activation
function and transformation function that have no positive impact
on collaborative filtering.

2.3 Transfer Learning and Cross Domain
Collaborative Filtering

In recent years, transfer learning has emerged as a new learning
framework to address the data sparsity problem by extracting and
transferring knowledge from related domain. Cross Domain Col-
laborative Filtering (CDCF) is the application of transfer learning
in recommendation, which focuses on how to transfer knowledge
(features) in an effective way.

The way to transfer knowledge is various, such as Collective ma-
trix factorization (CMF) [28] and codebook transfer [7, 15], which
are based on Matrix Factorization (MF) applied in each domain.
These approaches transfer interaction information from an auxil-
iary domain to improve the performance in a target domain with
shallowmodel. Specifically, CMF jointly factorizes the rating matrix
from two domains by sharing the user latent factors. This method
effectively realizes the transfer and improvement of common user
hidden features. The rise of deep learning contributes a lot to the
development of CDCF, and some studies have tried to fuse CDCF
with deep learning, such as CoNet [11] and its heterogeneous vari-
ants [19]. With MLP as the basic model, CoNet shares user features
in the embedding process and completes the transfer of interac-
tion features between the two domains through cross-mapping.
DARec [34] extractes and transfer patterns from rating matrices
in related domain, following the idea of domain adaptation. Later,
DDTCDR [17] utilizes user information and items’ metadata from
online platform by using autoencoder, then adopts latent orthog-
onal mapping to extract user preferences over multiple domains.
PPGN [35] adopts graph convolutional network to explore the high-
order connectivity between users and items on the joint interaction

graph of two domains, and then transfers knowledge by sharing
user features. Compared with the shallow cross-domain matrix
factorization models, the deep transfer methods generally exhibit
better performance, due to their stronger feature extraction ability.

3 PRELIMINARY
3.1 Problem Definition
We consider two domains 𝐷A and 𝐷B. The set of users in both do-
mains are shared, denoted by𝑈 (of size𝑚 = |𝑈 |). Let the set of items
in 𝐷A and 𝐷B be 𝐼A (of size 𝑛𝑎 = |𝐷A |) and 𝐼B (of size 𝑛𝑏 = |𝐷B |),
respectively. The purpose of bi-directional cross domain transfer is
to improve the recommendation performance in both domains. We
consider Top-𝑁 recommendation with implicit feedback in each
domain. Let 𝑅A ∈ R𝑚×𝑛𝑎 (𝑅B ∈ R𝑚×𝑛𝑏 , resp.) denote the user-item
interaction matrix of 𝐷A (𝐷B, resp.) from users’ implicit feedback,
where an entry 𝑟A

𝑢𝑖
∈ {0, 1} (𝑟B

𝑢 𝑗
∈ {0, 1}, resp.) is 1 if the interaction

between user𝑢 on item 𝑖 (item 𝑗 , resp.) is observed, and 0 otherwise.
The recommendation problem with implicit feedback is abstracted
as learning a function to estimate the scores of unobserved entries
in interaction matrix, which are later used for ranking. Specifically,
for domain A,

𝑟𝐴𝑢𝑖 = 𝑓 (𝑢, 𝑖 |Θ) (1)

where 𝑓 is the interaction function, Θ represents all learnable pa-
rameters, and 𝑟𝐴

𝑢𝑖
is the predicted score. For matrix factorization

(MF) techniques, the matching function is the fixed dot product.
For deep-learning based CF, such as NeuMF [10], the interaction is
implemented by non-linear neural networks.

Obviously, extracting satisfactory embeddings for users and
items is the key for better recommendation. Recently, GCN has
shown its powerful ability in capturing the collaborative signal in
high-order connectivities for more effective embedding learning.
In view of this, in our transfer learning approach for cross-domain
recommendation, each domain is also modeled by a graph convolu-
tional network, and the GCN in both domains are jointly learned
to improve the performance through bidirection high-order fea-
ture transfer. Before introducing our model in detail, we briefly
review two representative recommendation models based on GCN,
NGCF [29] and LightGCN [9], in the following subsection.

.

3.2 Brief Review of NGCF and LightGCN
The basic idea of GCN is to aggregate the features of neighbors so
as to obtain better feature expression of nodes on the graph. GCN
layer in general can be abstracted as:

e(𝑘+1)𝑢 = 𝐴𝐺𝐺 (e(𝑘)𝑢 , e(𝑘)
𝑖

: 𝑖 ∈ N𝑢 ) . (2)

where 𝐴𝐺𝐺 (·) is an aggregation function such as weighted sum
aggregator and mean aggregator, e(𝑘)𝑢 and e(𝑘)𝑢 respectively denote
the refined embeddings of user 𝑢 and item 𝑖 after 𝑘 layers propaga-
tion, and N𝑢 denotes the first-hop neighbors of user 𝑢. In order to
better understand the application of GCN in recommendation, we
briefly introduce the embedding propagation in NGCF and Light-
GCN. Note that we only show the user feature propagation process
in these two models, the item feature propagation process can be
obtained analogously.
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• Embedding Propagation Layer in NGCF:

e(𝑘+1)𝑢 = 𝜎 (W(𝑘 )1 e(𝑘 )𝑢 +
∑
𝑖∈N𝑢

1√
|N𝑢 | |N𝑖 |

(W(𝑘 )1 e(𝑘 )
𝑖
+W(𝑘 )2 (e

(𝑘 )
𝑖
⊙e(𝑘 )𝑢 )))

(3)
where 𝜎 (·) is the non-linear activate function, W(𝑘)1 and
W(𝑘)2 are trainable transformation matrices, N𝑢 and N𝑖 de-
note the first-hop neighbors of 𝑢 and 𝑖 , and ⊙ is the element-
wise product. Distinct from conventional graph convolu-
tional networks that consider the contribution of e𝑖 only,
NDCG additionally encodes the interaction between e𝑖 and
e𝑢 into the message being passed via e𝑖 ⊙ e𝑢 . The final user
embedding is obtained by concatenating the output of 𝐿
layers (i.e., {e(1)𝑢 , e(2)𝑢 , . . . , e(𝐿)𝑢 }) with the initial embedding
e(0)𝑢 . Finally, the predictive score is obtained by conducting
the inner product between the final user embedding and
item embedding.
• Embedding Propagation Layer in LightGCN:

𝑒
(𝑘+1)
𝑢 =

∑
𝑖∈N𝑢

1√
|N𝑢 | |N𝑖 |

𝑒
(𝑘)
𝑖

(4)

LightGCN greatly simplifies NGCF by removing the activa-
tion function and the transformation matrix (common in
GCN but unfavorable for CF). Besides, it uses weighted sum
in layer fusion to replace the self-connection in Equation (3)
and concatenation in the fusion layer. Compared to NGCF,
LightGCN reduces the risk of model overfitting to achieve
better performance.

In this work, instead of utilizing the embedding propagation rule of
NGCF or LightGCN directly, we will design our feature propagation
layer. We borrow the idea of LigthGCN to simplify the design of
GCN, in a more reasonable manner.

4 PROPOSED MODEL
We first introduce the overall structure of our BiTGCF model in
Section 4.1, and then detail the two core components of BiTGCF,
feature propagation and feature transfer, in Sections 4.2 and 4.3,
respectively. Finally, we introduce the model training in Section 4.4.

4.1 Architecture Overview
As depicted in Figure 2, the proposed model BiTGCF mainly in-
cludes three modules: (1) an embedding layer that offers the ini-
tialization of user embeddings and item embeddings; (2) a feature
propagation and transfer module (with multiple layers) that refines
the initial embeddings of user and item by feature propagation
in domain and feature transfer inter-domain; and (3) a prediction
layer which concatenates the refined embeddings from different
layers and outputs the probability that the given user-item pair is a
positive interaction.

Embedding: This module maps the ID of a user𝑢 (an item 𝑖) into
an embedding vector e(0)𝑢 ∈ R𝑑 (e(0)

𝑖
∈ R𝑑 ), where 𝑑 denotes the

embedding size. For ID embedding, this module can also be seen as
building a parameter matrix as an embedding look-up table, which
will be optimized in an end-to-end manner. Specifically, for domain

Embedding Feature Propagation and Transfer Prediction

Feature
Propagation

Feature
Transfer

Layer 1

Concat

Layer 2
Layer 3

Figure 2: An illustration of the architecture of BiTGCF (the
arrowed lines present the flow of information), in which the
red circle represents the current node according to the input.

A,
e(0)
𝑢𝑎 = P⊤x𝑢𝑎

e(0)
𝑖

= Q⊤x𝑖
(5)

where P and Q are learnable parameter matrices of user and item,
respectively, and x𝑢 and x𝑖 are one-hot encodings of the IDs of user
𝑢 ∈ 𝑈 and item 𝑖 ∈ 𝐼𝐴 , respectively. Note that we use e(0)𝑢𝑎 and e(0)

𝑢𝑏

to denote the embedding vectors of the same user 𝑢 in 𝐷A and 𝐷B,
respectively. Analogously, we can derive e(0)

𝑢𝑏
and e(0)

𝑗
for domain

B, where 𝑗 ∈ 𝐼𝐵 .
Feature Propagation and Transfer: As shown in Figure 2, in
this module, we feed [e(0)

𝑢𝑎 , e
(0)
𝑖

, e(0)
𝑢𝑏

, e(0)
𝑗
] through 𝐿 graph con-

volution layers to refine the embeddings of users and items. This
module consists of two components, feature (of both user and item)
propagation within each domain, and feature (of only user) transfer
between the two domains. We leverage the user-item interaction
graphs to propagate and transfer embeddings as follows,

e(𝑘+1)
𝑢𝑎 = 𝑓 AT

(
𝑓 AP (e

(𝑘)
𝑢𝑎 ), 𝑓 BP (e

(𝑘)
𝑢𝑏
)
)

e(𝑘+1)
𝑢𝑏

= 𝑓 BT

(
𝑓 AP (e

(𝑘)
𝑢𝑎 ), 𝑓 BP (e

(𝑘)
𝑢𝑏
)
)

e(𝑘+1)
𝑖

= 𝑓 AP (e
(𝑘)
𝑖
)

e(𝑘+1)
𝑗

= 𝑓 BP (e
(𝑘)
𝑗
)

(6)

where e(𝑘)
𝑢𝑎 and e(𝑘)

𝑖
respectively denote the refined embeddings of

𝑢 and 𝑖 after 𝑘 layers propagation in 𝐷A, e
(𝑘)
𝑢𝑏

and e(𝑘)
𝑗

respectively
denote the refined embeddings of𝑢 and 𝑗 after 𝑘 layers propagation
in 𝐷B, 𝑓 AP (·) and 𝑓 BP (·) respectively denote the feature propagation
function in 𝐷A and 𝐷B and will be defined in Section 4.2, 𝑓 AT (· , ·)
and 𝑓 BT (· , ·) respectively denote the feature transfer function in 𝐷A
and 𝐷B and will be defined in Section 4.3.

It is worth mentioning that in each layer, the feature transfer
acts only on user features. Nevertheless, the refinement of item
features can be achieved with the help of high-order connectivity
between the two domains through the feature propagation module.
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...

Figure 3: Illustration of Cross-domain Connectivity

Take the path marked in read in Figure 3 for example, 𝑖1 gets part
of message from its first-order (one-hop) neighbor 𝑢𝑎1 to refine its
feature. Similarly, 𝑢𝑏1 also gets part of message from its first-order
neighbor 𝑗1 to refine its feature. Then by the transfer module, we
can get the path 𝑖1 ← 𝑢𝑎1 ⇆ 𝑢𝑏1 ← 𝑗1 (or 𝑖1 → 𝑢𝑎1 ⇆ 𝑢𝑏1 → 𝑗1),
indicating that the connectivity between 𝑗1 and 𝑖1 can be learned.

Prediction: After propagating and transferring with 𝐿 layers, we
can obtain multiple feature representations for users and items. The
concatenation of multiple feature vectors learned from different
order neighbors will result in a stronger and more robust joint
representation for users and items. As such, we concatenate them
to get the final representation vector for user 𝑢 in 𝐷A and item 𝑖 as
follows.

e𝑢𝑎 = e(0)
𝑢𝑎 ∥ · · · ∥e(𝐿)𝑢𝑎

e𝑖 = e(0)
𝑖
∥ · · · ∥e(𝐿)

𝑖

(7)

where ∥ denotes the concatenation operation. Finally, we adopt
dot product, which is simple and non-parametric, to estimate the
probability of the user interact with the target item,

𝑟A𝑢𝑖 = 𝑦𝐴 (𝑢, 𝑖) = 𝜎 (e⊤𝑢𝑎e𝑖 ) (8)

where 𝜎 (·) is the sigmoid function to map real values to probability.
Note that domain B can be processed similarly to obtain 𝑟B

𝑢 𝑗
.

4.2 Feature Propagation
Feature propagation aims to refine nodes’ features on the cur-
rent graph by aggregating message from neighbors. Inspired by
NGCF [29] and LightGCN [9], we design a new feature propagation
rule in this work. We remove the non-linear activation function
and the transformation matrices in our GCN model for collabo-
rative filtering. The effectiveness of such an operation has been
verified in LightGCN [9]. But different from LightGCN, we retain
the inner product operation, whose effectiveness has been verified
by experiments in NGCF. Moreover, we use the same layer fusion
operation as that in NGCF, which, according to [4], is equivalent
to using residual prediction. Specifically, for a connected user-item
pair (𝑢, 𝑖) in domain A, we define the propagation function of 𝑢’s
and 𝑖’s features as follows,

𝑓 AP (e
(𝑘 )
𝑢𝑎 ) = e(𝑘 )

𝑢𝑎 +
∑

𝑖∈N𝑢𝑎

1√
|N𝑢𝑎 | |N𝑖 |

(
e(𝑘 )
𝑖
+ e(𝑘 )

𝑖
⊙ e(𝑘 )

𝑢𝑎

)
𝑓 AP (e

(𝑘 )
𝑖
) = e(𝑘 )

𝑖
+

∑
𝑢∈N𝑖

1√
|N𝑢𝑎 | |N𝑖 |

(
e(𝑘 )
𝑢𝑎 + e(𝑘 )𝑢𝑎 ⊙ e(𝑘 )

𝑖

) (9)

where N𝑢𝑎 and N𝑖 denote the first-hop neighbors of user 𝑢 and
item 𝑖 , e(𝑘)

𝑖
and e(𝑘)

𝑢𝑎 are the representations of item 𝑖 and user 𝑢

...

...

0

1

Join edges

Item

User

Weight in edges

Inner product

Self-connect

...

...
...

Feature
Propagation

Figure 4: Illustration of Feature Propagation

passed from layer 𝑘 , ⊙ denotes the element-wise product, and the
symmetric normalization term 1√

|N𝑢𝑎 | |N𝑖 |
follows the design of

standard GCN to avoid the scale of embeddings increasing with
propagation operations, which has also been used in NGCF and
LightGCN. Note that for domain B, 𝑓 Bp (·) can be defined similarly.

The process of feature propagation is depicted in Figure 4. The
message passed to the center node𝑢 along the connected edge from
the neighbor nodes (items) includes two parts: (1) the normalized
weighted feature; and (2) its inner product with the center node 𝑢.
The former is the general operation of GCN to integrate information
from the neighbor nodes, while the latter ensures that the larger the
match scores between the user and the item, the greater the value
passed to the center node. Finally, we consider self-connection of
the center node 𝑢 to retain the information of the original features.

4.3 Feature Transfer
Feature transfer is the key component of BiTGCF, which realizes
bidirectional user feature transfer between 𝐷A and 𝐷B. As men-
tioned in Section 1, we take both common features and domain-
specific features into consideration, which is different from existing
CDCF methods that only consider learning common features. We
define the feature transfer function of 𝑢 in 𝐷A and 𝐷B as follows,

𝑓 AT (· , ·) =
1
2
(𝐶 (𝑘) +𝐴(𝑘) ) (10)

𝑓 BT (· , ·) =
1
2
(𝐶 (𝑘) + 𝐵 (𝑘) ) (11)

Specifically,

𝐶 (𝑘) = 𝑙𝑢𝑎 𝑓 AP (e
(𝑘)
𝑢𝑎 ) + 𝑙𝑢𝑏 𝑓

B
p (e

(𝑘)
𝑢𝑏
) (12)

𝐴(𝑘) = 𝜆𝑎 𝑓 AP (e
(𝑘)
𝑢𝑎 ) + (1 − 𝜆𝑎) 𝑓 BP (e

(𝑘)
𝑢𝑏
) (13)

𝐵 (𝑘) = (1 − 𝜆𝑏 ) 𝑓 AP (e
(𝑘)
𝑢𝑎 ) + 𝜆𝑏 𝑓 BP (e

(𝑘)
𝑢𝑏
) (14)

where 𝑙𝑢𝑎 and 𝑙𝑢𝑏 are user-related weight factors for domain A and
B respectively, 𝜆𝑎 and 𝜆𝑏 are hyper-parameters within the range of
[0, 1] that are used to control the retention ratio of user features in
the corresponding domain. Note that 𝑙𝑢𝑎 (𝑙𝑢𝑏 ) is calculated based
on the ratio of the number of 𝑢’s interacted items in 𝐷A (𝐷B) to the
number of items 𝑢 interacted with in both domains, i.e.,

𝑙𝑢𝑎 =
|N𝑢𝑎 |

|N𝑢𝑎 | + |N𝑢𝑏 |
(15)

𝑙𝑢𝑏 = 1 − 𝑙𝑢𝑎 (16)
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It is clear to see that Equation (12) adopts the idea of feature propa-
gation on the graph, which forms improved feature by aggregating
the features from 𝑓 Ap (e

(𝑘)
𝑢𝑎 ) and 𝑓 Bp (e

(𝑘)
𝑢𝑏
). In this way, we can regard

𝐶 (𝑘) as the common features derived for 𝑢 under both 𝐷A and 𝐷B.
Moreover, the design of the weight factors 𝑙𝑢𝑎 and 𝑙𝑢𝑏 indicates that
more interaction data there is for 𝑢 in 𝐷A (or 𝐷B), more features in
𝐷A (or 𝐷B) will contribute to the common features, and vice versa.

𝐴(𝑘) and 𝐵 (𝑘) are used to preserve the users’ domain-specific
features in 𝐷A and 𝐷B respectively. We use the hyper-parameters
𝜆𝑎 and 𝜆𝑏 to control the retention ratio. For example, when 𝜆𝑎 =

𝜆𝑏 = 1.0, it indicates that 100% of the user features in 𝐷A and 𝐷B
is retained, so user features have the largest specificity in both
domains. When 𝜆𝑎 = 𝜆𝑏 = 0.5, the specificity in users’ features
disappears and the same users have the same features in both
domains, and the transfer module in BiTGCF becomes the same as
that in existing CDCF methods.

Finally, we emphasis equally on the obtained common features
and domain-specific features to balance them, as shown in Equa-
tions (10) and (11). This operation, though simple, is very effective
in keeping the stability of the model performance, as validated in
our experimental study.

4.4 Model Training
The deep model calculates the gradient to update the parameters
through the loss function. Therefore, a suitable loss function should
not only avoid the model falling into local optimization but also
accelerate the model convergence. For recommender systems, two
types of loss functions are widely used, point-wise which focuses on
predicting scores more accurately, and pair-wise [8] which focuses
on learning rank more accurately. In this paper, we consider point-
wise loss function and leave the pair-wise version to our future
work. The most commonly used point-wise loss is the squared loss
(SE), but it is not suitable for implicit feedback. Hence, following
several previouswork, we employ the binary cross-entropy function
as the loss function, which can be defined as,

𝐿 (𝑟𝑢𝑖 , 𝑟𝑢𝑖 ) = −
∑

(𝑢,𝑖 )∈𝑅+∪𝑅−
𝑟𝑢𝑖 log𝑟𝑢𝑖 + (1−𝑟𝑢𝑖 log(1−𝑟𝑢𝑖 )) +𝜆 ∥Θ∥22 (17)

where 𝑅+ is the set of observed interaction history, and 𝑅− is the
set of randomly sample from unobserved interaction. 𝜆 controls
the 𝐿2 regularization strength to prevent overfitting. Θ = {𝐸0𝑢 , 𝐸0𝑖 }
and 𝐸0𝑢 (𝐸0

𝑖
) is the initial embedding matrix for all users (items). In

order to improve the accuracy on both domains, we define the joint
loss function as follows,

𝐿𝑗𝑜𝑖𝑛 = min
𝑓 AT ,𝑓 AP ,𝑓 BT ,𝑓 BP

𝐿 (𝑟A𝑢𝑖 , 𝑟
A
𝑢𝑖 ) + 𝐿 (𝑟

B
𝑢𝑗 , 𝑟

B
𝑢𝑗 ) (18)

We adoptmini-batch Adam to optimize themodel and update the pa-
rameters. Moreover, similar to NGCF, we introduce dropout mech-
anisms to prevent neural networks from overfitting. Specifically,
we drop out the messages being propagated in Equation (9) with
a probability in training, and disable this operation during testing.
Note that BiTGCF is a bi-directional transfer mode in which data
from two domains participate in the training at the same time, but
are evaluated separately.

Table 1: Statistics of the datasets

Dataset #Users #Items #Interactions Density
Elec 3,325 39,463 118,879 0.091%
Cell 3,325 18,462 53,732 0.088%
Sport 9,928 32,310 102,540 0.032%
Cloth 9,928 41,303 97,757 0.024%
Sport 4,998 22,101 55,556 0.050%
Cell 4,998 14,618 47,444 0.065%
Elec 15,761 53,309 226,626 0.027%
Cloth 15,761 51,865 136,844 0.017%

5 EXPERIMENT
We first describe the experimental setup in Section 5.1, and then
compare the proposed model with state-of-the-art methods in Sec-
tion 5.2. To justify the effectiveness of the transfer learning module,
we study its adaptability in Sections 5.3, as well as its performance
under different data sparsity levels in Section 5.4. Finally, the impact
factor analysis is presented in Section 5.5.

5.1 Experimental setup
5.1.1 Dataset. We evaluate our proposed model on real-world
datasets from Amazon dataset1, including two couple datasets,
Electronics (Elec for short) & Cell Phones (Cell for short), and
Accessories, Sports and Outdoors (Sport for short) & Clothing
Shoes and Jewelry (Cloth for short). Moreover, in order to show
that BiTGCF still has good transfer capability in domains with
lower similarity, the cross pairing of the two groups, Sport & Cell
and Elec & Cloth, are used as the third and fourth couple datasets.
For the data in these four couple datasets, we first transform them
into implicit data, where each entry is marked as 0 or 1, indicating
whether the user has rated the item. Then, we filter the datasets
to retain users with number of ratings greater than 5 and items
with number of ratings greater than 10, and extract the overlapping
users in both domains. Table 1 summarizes the detailed statistics of
the four couple datasets.

5.1.2 Evaluation Protocol. We adopt the widely used leave-one-
out evaluation method. Specifically, we take a random sample from
each user’s interaction history as the test set, and the remaining are
utilized for training. Then we randomly select 99 items from each
user’s non-interacted items to form negative samples. The recom-
mendation model would predict 100 records (99 negative samples
and 1 positive sample) of the user and output top-𝑁 items. We use
the commonly used Hit Ratio (HR) and Normalized Discounted
Cumulative Gain (NDCG) to evaluate the ranking performance. For
both measures, we truncate the ranked list at 10. Hence, the HR
measures whether the test item is present on the top-10 list, and
the NDCG measures the ranking quality by assigning higher scores
to hits at top ranks.

5.1.3 Compared Methods. We compare BiTGCF with both single
domain and cross domain recommendation models. We leave out
the comparison with DDTCDR [17] and DARec [34], because they

1http://jmcauley.ucsd.edu/data/amazon/
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Table 2: Performance comparison in terms of HR and NDCG. Best performance is in boldface and the best baselines are un-
derlined.

Dataset Metrics Single domain Methods Cross domain Methods Ours
BPRMF+ MLP+ NGCF+ LightGCN+ CMF CDFM CoNet PPGN GCF+ BiTGCF

Elec HR 0.3471 0.4448 0.4665 0.4701 0.3894 0.3998 0.4484 0.4337 0.5871 0.6036
NDCG 0.2224 0.2814 0.2969 0.2990 0.2457 0.2513 0.2890 0.2664 0.3682 0.3767

Cell HR 0.4271 0.4848 0.4983 0.5185 0.4239 0.4117 0.4899 0.4386 0.6198 0.6571
NDCG 0.2919 0.3108 0.3358 0.3253 0.2631 0.2599 0.3102 0.2773 0.4119 0.4210

Sport HR 0.2784 0.3660 0.4251 0.4623 0.3108 0.3196 0.3743 0.3484 0.5421 0.5346
NDCG 0.1778 0.2169 0.2681 0.2910 0.1837 0.1874 0.2254 0.2038 0.3414 0.3375

Cloth HR 0.2250 0.3464 0.3723 0.4011 0.2930 0.2501 0.3442 0.3239 0.5101 0.5242
NDCG 0.1348 0.2073 0.2359 0.2570 0.1612 0.1509 0.2090 0.1819 0.3067 0.3113

Sport HR 0.2990 0.3663 0.3858 0.3978 0.3157 0.3345 0.3700 0.3316 0.5018 0.5442
NDCG 0.2025 0.2368 0.2527 0.2498 0.1930 0.2163 0.2392 0.2260 0.3122 0.3374

Cell HR 0.3315 0.4764 0.4926 0.4970 0.3918 0.4574 0.4824 0.4418 0.5486 0.5654
NDCG 0.2211 0.3080 0.3173 0.3074 0.2286 0.1605 0.3134 0.2851 0.3566 0.3709

Elec HR 0.2780 0.4877 0.5007 0.5086 0.4580 0.4106 0.4931 0.4633 0.5357 0.5359
NDCG 0.1761 0.3191 0.3235 0.3288 0.3032 0.2817 0.3220 0.2920 0.3549 0.3575

Cloth HR 0.2262 0.3562 0.3632 0.3662 0.3196 0.3017 0.3461 0.3221 0.4003 0.4384
NDCG 0.1371 0.2160 0.2238 0.2199 0.1907 0.1801 0.2015 0.1934 0.2461 0.2555

both use Auto-encoder as a feature extractor for pre-training, which
is different from the end-to-end form of the methods to be evaluated.

• BPRMF [26] is a classical single-domainmodel, which learns
the user and item factors via matrix factorization and pair-
wise rank loss.
• MLP [10] is single-domain deep model, which uses deep
neural networks to learn the matching function.
• NGCF [29] is a single-domain GCN based model. It first cap-
tures the high-order connectivity information in the embed-
ding function by stacking multiple embedding propagation
layers, and then concatenates the obtained embeddings and
uses inner product to make prediction.
• LightGCN [9] is also a single-domain GCN based model
evolved from NGCF. It simplifies the design in the feature
propagation component by removing the non-linear activa-
tion and the transformation matrices. Moreover, it adopts a
different layer combination strategy from NGCF.
• CMF [28] is a multi-relation learning approach which factor-
izes matrices of domains A and B simultaneously by sharing
the user latent factors. It is a shallow model, which first
jointly learns on two domains, and then optimizes the target
domain.
• CDFM [20] is a cross-domain shallow model. It takes user
interaction history from auxiliary domains as context to
generate a recommendation on the target domain with fac-
torization machines.
• CoNet [11] is a cross-domain deep model, which transfers
knowledge across domains by cross connections between
the base networks. It jointly learns on two domains and
optimizes both domains simultaneously. Note that our model
BiTGCF is different from CoNet in that it transfers user-item
interaction features, while BiTGCF transfers user features.
• PPGN [35] is a cross-domain deep model, which fuses the
interaction information of the two domains into a graph, and

shares the features of users learned from the joint interaction
graph by stacking multiple graph convolution layers. Finally,
it inputs the learned embeddings to the domain-specific MLP
structure to learn the matching function.
• GCF is a degenerate version of BiTGCF without the feature
transfer layer. It is a single-domain GCN based model.

Note that in order to exclude the influence of loss function on
the results, we change the loss function of NGCF and LightGCN
from BPR to cross entropy, so as to unify the loss function among
all the methods based on deep learning. Moreover, in order to more
accurately evaluate the effect of our transfer module, for single-
domain methods including BPRMF, MLP, NGCF, LightGCN and
GCF, we use ‘model-name+’ to denote the same model but with
mixed datasets as the training set. For example, given MLP+ and a
couple dataset Elec&Cell, MLP+ will use Elec combining with Cell
as the training set, and then test on Elec and Cell respectively.

5.1.4 Parameter Settings. For BPRMF, we use the BPRMF class in
LightFM2, a popular CF library, for training and vary the number of
epoch from 0 to 40 to get the best result. For CMF, we use a Python
version reference to the original Matlab code and the parameters
are randomly initialized from Gaussian N(0, 0.01). For CDFM, we
process and code the data according to the paper, then feed it to
PyFM3 for training. For MLP4 and CoNet5 with deep structure, we
maintain the optimal configuration in their papers, the configura-
tion of the hidden layers is [64, 32, 16, 8] and the ratio of negative
sampling is set to 4. For NGCF6 and LightGCN7, we use the pub-
lished source code and only change the loss function from BPR to
cross entropy. Moreover, we set the embedding propagation layer

2https://github.com/lyst/lightfm
3https://github.com/coreylynch/pyFM
4https://github.com/hexiangnan/neural_collaborative_filtering
5http://home.cse.ust.hk/ghuac/
6https://github.com/xiangwang1223/neural_graph_collaborative_filtering
7https://github.com/kuandeng/LightGCN
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as [64, 64, 64], the learning rate as 0.001, the size of mini batch as
1024, the ratio of negative sampling as 4, and the message dropout
ratio as 0.1 for NGCF and 0 for LightGCN, respectively. For PPGN,
we use the source code provided by the author and change the data
pipeline. We also set the ratio of negative sampling as 4, and turn
the number of GCN layers from 3 to 5 as the paper states. For GCF
and BiTGCF, we implement them by TensorFlow, and use the same
parameter settings as that of NGCF. We use the Xavier initializer
to initialize the parameters of NGCF, LightGCN and our methods.
Moreover, early stopping is performed if HR@10 on the test data
does not increase for 5 successive epochs. Note that CoNet, PPGN
and BiTGCF are bi-directional transfer models, which means we
can obtain the results on a couple dataset at the same time, while
the performance of single domain methods are obtained by first
training on the mixed datasets and then evaluating separately on
each dataset.

5.2 Performance Comparison
Table 2 shows the summarized results of our experiments on the
four-couple datasets in terms of twometrics, HR@10 andNDCG@10.
Due to space concern, the performance of the single-domain meth-
ods under the single dataset is not shown in Table 2. In fact, from
our experiments, the performance of the single-domain models
under mixed dataset in general is better than that under the single
dataset, and partial results regarding this point will be reported in
Section 5.3. From Table 2, we have the following key observations:

• For single domain methods, MLP+ consistently outperforms
BPRMF+, demonstrating the importance of exploring nonlin-
ear interaction relation between users and items. GCN-based
methods, including NGCF+, LightGCN+ and GCF+, consis-
tently outperforms MLP+. This validates the effect of mining
high-order connectivities for better recommendation perfor-
mance. The improvement of LightGCN+ over NGCF+ may
come from the enhancement of its generalization ability,
which is less prone to overfitting. Further, compared with
NGCF+ and LightGCN+, GCF+ retains the inner product and
the self-connection operation to appropriately increase the
feature flow among nodes. This might be the reason that
GCF+ can gain superior performance over LightGCN+.
• Cross domain methods vs. single domain methods. The su-
perior performance of CMF and CDFM over BPRMF+ pro-
vides evidence that compared to directly mixing the two
datasets, the transferred knowledge from auxiliary domain
does improve the performance of the target domain. The
performance of CoNet is better than MLP+ in most cases,
which validates the effect of the cross connect unit, how-
ever the improvement is very limited than direct mixing
the two datasets. Moreover, we can see that NGCF beats
CoNet on almost all the datasets. This demonstrates that
the transfer learning mechanism, if not well designed, is
not as effective as mining high-order connectivities for bet-
ter embeddings. Surprisingly, PPGN is worse than NGCF
and even worse than CoNet. This might be caused by the
datasets, since PPGN has been shown to outperform CoNet
on CD&Music and Book&Movie in [35]. We guess the poor
performance of PPGN on datasets with large distribution
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Figure 5: The applicability of the transfer module.

gapsmight come from that it uses the same propagation layer
on the joint graph of the two domains. BiTGCF achieves the
best performance among the evaluated single-domain and
cross-domain methods on all the datasets, which indicates
that it is on the right track to exploit the high-order connec-
tions in-domain and inter-domain by using graph structures
and fuse common features with domain-specific features
through the feature transfer module.

5.3 The Applicability of the Transfer Module
In order to verify the applicability of our transfer module, we incor-
porate GCN-based models NGCF and LightGCN with our transfer
module, and name the derived methods as NGCF* and LightGCN*.
Figure 5 shows the results. In Figure 5(a) and 5(b), the two domains
of the two couple datasets (Elec&Cell, Sport&Cloth) have higher
similarity, while in Figure 5(c) and 5(d), the two domains of the two
couple datasets (Elec&Cloth, Sport&Cell) have lower similarity. In
order to indicate the pairing information of the current dataset, the
expression of the ’target’_’source’ domain is adopted. For example,
Elec_Cell means the Elec dataset with the participation of Cell.

Comparing the first point with the second point in each method,
we can observe a growth trend in Figure 5(a) and 5(b) for all the
methods in most cases, as well as a downward trend in Figure 5(c)
and 5(d). The reason might be that, the mixing of data in two similar
domains increases the amount of training set, which promotes the
training of the model and in turn improves the performance. On
the contrary, when the two domains are not similar, simply mixing
them may lead to model confusion, which makes it difficult to train
and thus degrade the performance.

Comparing the third point with the first two in each method,
we can conclude that the methods with transfer mechanism in
general can achieve the best result. This validates the effectiveness
of our transfer module. In summary, compared with directly mixing
datasets, knowledge transfer yields to better performance.
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Table 3: Statistics of splited datasets.

Dataset Groups Num≤ #Users #Interactions Density

Sport

G1 8 2769 17008 0.028%
G2 14 1306 14207 0.049%
G3 30 726 14422 0.090%
G4 323 197 9919 0.23%

Cell

G1 6 2209 11930 0.037%
G2 10 1638 13256 0.055%
G3 20 893 12410 0.095%
G4 155 258 9848 0.26%

Table 4: Results on Sport_Cell. The improvement is the re-
sult of BiTGCF to the best one from GCF and GCF+.

Metrics Methods G1 G2 G3 G4

HR

GCF 0.5081 0.5253 0.5840 0.6447
GCF+ 0.4778 0.5061 0.5606 0.5935
BiTGCF 0.5314 0.5330 0.5923 0.6374
Improv. 4.59% 1.47% 1.42% -1.13%

NDCG

GCF 0.3061 0.3307 0.3747 0.4267
GCF+ 0.3001 0.3125 0.3536 0.4035
BiTGCF 0.3230 0.3326 0.3760 0.4301
Improv. 4.87% 1.03% 1.54% 1.75%

Table 5: Results on Cell_Sport. The improvement is the re-
sult of BiTGCF to the best one from GCF and GCF+.

Metrics Methods G1 G2 G3 G4

HR

GCF 0.5147 0.5549 0.6036 0.7093
GCF+ 0.5093 0.5516 0.6011 0.6852
BiTGCF 0.5283 0.5720 0.6103 0.686
Improv. 2.64% 3.08% 1.11% -3.28%

NDCG

GCF 0.3340 0.3530 0.4032 0.4910
GCF+ 0.3290 0.3506 0.4015 0.4789
BiTGCF 0.3419 0.3636 0.4251 0.4787
Improv. 2.37% 3% 5.43% -2.51%

5.4 Performance of the Transfer Module w.r.t
Data Sparsity Levels

The number of user interactions is an important factor that affects
the recommendation performance. In order to test the influence
of data sparsity levels, we divided the dataset into groups with
different sparsity according to the number of user interactions.
Specifically, with the principle of minimizing the difference in the
number of interactions between each group, all users are divided
into four groups G1, G2, G3 and G4 in the order of increasing
number of interactions. Table 3 shows the splited results of Sport &
Cell, in which users with the number of interactions no more than 8,
14, 30 and 323 are divided into G1, G2, G3 and G4, respectively. From
Table 4, we can find that the improvement achieved in the first two
groups (e.g., 4.59% and 1.47%) are more significant than that of the
last two (e.g.,1.42% and -1.13%). The result indicates that the feature
transfer module can help improve recommendation performance
for relatively inactive user (with less interaction items). A similar
trend can be observed from Table 5.
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Figure 6: Effect of Transfer Layer Number
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Figure 7: Effect of 𝜆

5.5 Impact Factor Analysis
5.5.1 Number of feature transfer layers. The feature transfer mod-
ule is the core of BiTGCF, and its effect is verified by changing the
number of transfer layers with fixed number of features propaga-
tion layer. In particular, we vary the layer number 𝐿 in the range of
{0, 1, 2, 3}. More specifically, based on the single-domain model GCF
(with three propagation layers but non transfer layers), the transfer
layer is added from the top layer. For example, when 𝐿 = 1, one
feature transfer component is added in the last feature propagation
layer; when 𝐿 = 2, two feature transfer components are added in
the last two feature propagation layers.

From Figure 6, we can see that with the increase of 𝐿, the perfor-
mance of BiTGCF also increases. The reason may come from that
the feature transfer module communicates different domains, en-
abling the model to mine higher-order relationships between nodes
by stacking multiple features propagation and transfer layers. More-
over, it can be seen from Figure 6(c) and 6(d) that when 𝐿 = 3, the
performance of BiTGCF degrades on some datasets. This indicates
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that mining for higher-order connectivities is not always beneficial
for the performance improvement. However, when 𝐿 = 0, the per-
formance of BiTGCF is always the worst, which demonstrates the
effect of our transfer module.

5.5.2 Hyper-parameters 𝜆𝑎 & 𝜆𝑏 . In this set of experiments, we
analyze the influence of hyper-parameters 𝜆𝑎 and 𝜆𝑏 on the perfor-
mance. For simplicity, we always consider a single hyper-parameter
𝜆 = 𝜆𝑎 = 𝜆𝑏 . Figure 7 shows the results, with a step size of 0.1,
ranging in [0.5, 1]. Figure 7(a) and 7(b) show the results of BiTGCF
on Elec & Cell and Sport & Cloth, respectively. The overall best
result is achieved when 𝜆 is around 0.5 and 0.6. The results on Sport
& Cell and Elec & Cloth are shown in Figure 7(c), 7(d), where the
best result appears when 𝜆 = 0.8. The result implicitly reflects that,
when the similarity between the two domains is low, it is necessary
to retain more domain-specific features.

6 CONCLUSION
In this paper, we proposed BiTGCF for Top-𝑁 cross-domain recom-
mendation by combining the idea of high order feature propagation
in graph structure with transfer learning. Inspired by NGCF and
LightGCN, we designed a new feature propagation module, which
simplifies the feature propagation in a more reasonable manner to
reduce the risk of model over-fitting but still preserve some non-
linearity to boost the recommendation performance. Moreover, we
took the first time to consider the domain-specific features in differ-
ent domains when refining user features, and designed a simple but
effective balancing mechanism to balance user’s common features
and domain-specific features. By combining inter-domain feature
transfer with in-domain feature propagation, our model realizes
more efficient representation and transfer of users’ common fea-
tures and their integration with domain-specific features. Remark-
able performance improvements on several benchmark datasets
demonstrate the effectiveness of our BiTGCF model.
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